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ABSTRACT  

This study investigates the capability of a Machine Learning algorithm, Sup-
port Vector Regression (SVR), to predict the bearing capacity of driven con-
crete piles. Restrikes conducted to make Dynamic Load Tests (DLT) were 
used for training the algorithm as the DLT-derived capacity was used as the 
target value. The performance is compared to the Danish Driving Formula. 
The research explores the importance of domain knowledge and feature engi-
neering in the process of selecting, manipulating, and creating relevant input 
variables (features) that improve model performance and generalization. The 
trained model demonstrates a very high correlation with the target and strong 
confidence in its bearing capacity predictions, outperforming the Danish Driv-
ing Formula. Sensitivity analyses show that a feature-engineered model has 
improved generalization and interpolation capabilities in parameter regions 
with few or no data in the training set. 

1. INTRODUCTION  

Accurate assessment of the bearing capacity of driven piles is a critical aspect 
of geotechnical engineering, influencing the design of foundations and the 
economy of the structure. Data from pile driving records can be used to pre-
dict pile bearing capacities, but the capacities are significantly affected by the 
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build-up of excess pore water pressure during pile installation. Restrikes after 
a short time provide a valuable source of information that is significantly less 
affected by set-up. Restrikes can be made at low cost on piles after end-of-
driving, where some combination of pile set and drop height is registered. 
This study aims to utilize the restrike data, which are readily available or can 
be obtained at low cost. 

Often, pile driving formulas, e.g., the Danish Driving Formula [1] are used to 
determine pile capacities. These semi-empirical methods are based on energy 
considerations and use the driving data (end-of-driving or restrike). Other pile 
capacity prediction methods include Static Load Test (SLT) and Dynamic 
Load Testing (DLT) with signal matching, e.g., the CAPWAP method [2]. 
Where SLTs are often scarce due to their circumstantial setup and time con-
sumption, DLTs are fast and therefore often preferred. 

The Danish Driving Formula is simple to use and remains popular as it allows 
for immediate estimation of the present pile capacity during driving. How-
ever, it assumes that all energy related to the hammer impact is converted into 
pile penetration except for the strain energy related to elastic pile compres-
sion, and it has not been recalibrated for decades. Now, more data types are 
accessible, and piling equipment has become more advanced. Machine Learn-
ing (ML) offers a data-driven approach and enables the inclusion of other rel-
evant variables, e.g., if a pile is coupled, without the need to establish physics-
based equations. 

Several ML techniques have been applied in geotechnical engineering with 
Artificial Neural Networks (ANNs) being a popular choice in research. In 
1995, Chan et al. demonstrated the feasibility of ANN on the prediction of the 
ultimate pile bearing capacity from pile driving records, outperforming pile 
driving formulas [3].  

Another popular ML technique is Support Vector Machines (SVM) [4] which 
has been found to work well for geotechnical applications in comparison with 
back-propagation neural networks [5]. In 2010, Pal and Deswal compared 
SVM to the Gaussian Processing (GP) algorithm, which suggests that the lat-
ter has a slightly improved prediction capability [6]. Both SVM and GP were 
shown to significantly outperform pile driving formulas.  

This paper aims to verify previous findings and compare the performance of 
ML to the Danish Driving Formula. This study’s focus is, by applying domain 
knowledge to the data science approach, to include other variables and to ma-
nipulate features to improve the performance and generalization of the trained 
algorithm. Hence, only a single algorithm, SVM, will be applied. It is chosen 
for its relatively simple and logical formulation and because it is supervised 
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and popular for solving similar geotechnical problems, where it has shown 
promising results. 

Section 2 provides more detailed insight into the background of the paper, and 
Section 3 outlines the methodology. The results are presented in Section 4 and 
discussed in Section 5, while Section 6 provides the overall conclusions. 

2. BACKGROUND

Driving a pile induces excess pore water pressure within the soil penetrated. 
When the pore pressures dissipate, the effective stresses increase which in 
turn increases the pile capacity. The time-dependent increase in pile bearing 
capacity arising from pore water dissipation and other secondary mechanisms 
such as creep and thixotropy is referred to as set-up [7]. DLTs, for which re-
strikes are made to record stress waves, are most often conducted a period of 
time after end-of-driving to more accurately verify the pile capacity. CAP-
WAP analysis of the recorded stress waves provides a very reliable determi-
nation of the ultimate capacity of driven piles [2].  

Therefore, the DLT with CAPWAP analysis is used as the target value in this 
study. By comparing data of the restrike for DLT with the DLT itself, the 
comparison is not affected by time, i.e. pile set-up. A model can be trained 
with this data set to predict DLT results, and if applied at restrikes at a differ-
ent (earlier) time, the result reflects the capacity at that specific time. 

Figure 1 Schematic pile capacity development due to set-up. 

Different ML techniques have previously shown improved capabilities of pre-
dicting the ultimate pile capacity in comparison with different empirical driv-
ing formulas not including the Danish Driving Formula. However, these re-
search projects have focused on comparing prediction performance between 
different machine learning techniques and relating it to empirical methods 
[3][5][6]. Little attention was paid to the features used by the algorithms to 
learn if any additional information will benefit the performance, or how fea-
tures may be manipulated to achieve generalization and increase performance. 
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This study attempts to improve the performance and generalization capabili-
ties of the trained ML algorithm using a domain knowledge-based feature en-
gineering approach. 

3. METHODOLOGY 

For building the machine learning model, Support Vector Regression (SVR) 
is used. SVR finds a hyperplane in a high-dimensional space that best fits the 
data points while allowing some errors within a margin. A kernel function 
transforms the data points into a higher-dimensional space from where the op-
timal hyperplane is found, and for this non-linear problem, the radial basis 
function (rbf) kernel is chosen. The data points closest to the hyperplane are 
the support vectors which have the greater influence on the hyperplane. In re-
gression, the margin that minimizes the distance between the hyperplane and 
the data points is determined by the hyperparameters (C regularization, ε mar-
gin of tolerance, and γ kernel coefficient) which must be tuned in a grid search 
for optimal performance [8]. 

The SVR model is compared to the Danish Driving Formula [1], which takes 
the form: 
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and uses six variables: the hammer drop height h (m), the hammer weight Gh

(kN), pile set per hammer blow s (m), pile length Lp (m), and cross-sectional 
area of the pile A (m2). The nondimensional efficiency factor of the hammer η
is equal to 1.0 for modern hammers, and Young’s modulus E is set at a con-
stant uniform value of 20 GPa for concrete. The subscript “dyn;m” refers to a 
dynamic resistance that is measured and subsequently regulated by partial fac-
tors to provide a design value. 

Data set 

The data set that is used to build the SVR model is a sample of DLT reports of 
367 impact-driven piles installed for 16 commercial projects scattered across 
the western part of Denmark. The target value is the derived pile bearing ca-
pacity of these reports based on the CAPWAP method which ranges from 600 
to 4610 kN. This includes concrete piles with square cross-sections having 
side lengths ranging from 25 to 40 cm. The pile lengths range from 8 to 30 m 
where piles longer than 18 m are coupled with a pile joint. The piles are em-
bedded in various common Danish soils of sand, clay, silt, gravel, clay till, 
and unhardened limestone, and the environment of deposition ranges over ma-
rine, sub-glacial, and meltwater, while the ages of deposition are either 
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Danien or Quaternary. The hammer type used is either free-falling or acceler-
ating. The restrikes conducted for the DLTs include the following variables: 
hammer weight (60 to 90 kN), drop height (0.2 to 1.2 m), and pile set (5 to 
138 mm). Due to the increased significance of measurement error, pile sets 
lower than 5 mm have been disregarded. 

Data processing and model building 

Data exploration has been performed to better understand the data and its lim-
itations. For example, the distribution of the pile lengths in Figure 2 shows a 
tendency for the pile capacity to increase with pile length though non-linearly. 
On the contrary, shorter piles do not necessarily have a lower capacity as the 
distance to firm ground is independent of the pile length but not vice versa. 
Although stresses generally increase with depth, the pile base depth should be 
disregarded to avoid the deduction that capacity is always directly propor-
tional to pile length.

Figure 2 Mean capacity ± one standard deviation (black) vs. pile length grouped by 
pile joint type. 

Features have been manipulated to achieve better generalization using domain 
knowledge of the physics behind the data and the relations between individual 
parameters. An example of this feature engineering is that the features Ham-
mer Weight and Drop Height are multiplied into Hammer Energy as both pa-
rameters hold information about the input energy. Yet, for the hammer 
weight, the data set does not capture the parameter space well. In combining 
the features, a new parameter space is created which may close gaps in the 
data and provide better coverage of the population as illustrated in Figure 3. 

An alternative approach of employing an unsupervised approach such as the 
Principal Component Analysis (PCA) submits control and domain knowledge 
from the model building process, and the model behavior becomes non-ex-
planatory as opposed to a manual feature engineering approach. 
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Figure 3 Exploration of initial and manipulated features. 

The model building itself follows the iterative process described in Figure 4. 
For each iteration, the data set is split randomly with 80 % distributed into a 
training set and the remaining 20 % into a test set (the same random split is 
used throughout). The model is trained on the training set with a k-fold cross-
validation scheme. This is done to provide robustness for the estimation of 
model performance, reduce the risk of overfitting, and assess how well the 
model will perform on unseen data. The main evaluation score is set as the co-
efficient of determination, R2, evaluated with Scikit-learn [8]. 

Figure 4 Development process of a supervised machine learning model. 

For a random data split, two SVR models have been trained to predict pile ca-
pacity: A Baseline model with the same input features as in the Danish Driv-
ing Formula (see Eq. (1)), and a Feature-Engineered model. The hyperparam-
eters have been optimized in a three-dimensional grid-search of 10 × 8 × 11 
(C × ε × γ) with a k-fold cross-validation scheme of a random data split with 5 
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folds and 3 repetitions, where the models were evaluated for each iteration 
with the radial basis function kernel. 

4. RESULTS 

The feature selection relied on physical considerations of the pile that encap-
sulate the proportions of the pile geometry, the impact energy, and the soil re-
sistance based on available data on the driven piles. The result of that process 
is the following features: The proportions and geometry are described in fea-
ture spaces of the pile dimension B (m), pile aspect ratio Lp / B (-), pile joint 
and hammer type (categoricals), pile reinforcement ratio Asteel / Aconcrete, and 
the weight ratio of the hammer to pile Gh / Gp (-). The majority of engineering 
features are based on normalized parameters to spread out the data points of 
the feature spaces more evenly. The Hammer Energy Eh = h × Gh (kNm) rep-
resents the input energy, and the pile set per blow s (m) reflects the soil re-
sistance. 

The performance of the SVR models for pile capacity prediction as evaluated 
on training and test sets are shown in Figure 5, the score metrics are shown in 
Table 1, and the SVR models are compared against the Danish Driving For-
mula in Figure 6. 

 Figure 5 Pile capacity predictive performance of Baseline (left) and Feature-Engi-
neered (right) SVR models. Models are evaluated on the training set (red) and test set 
(green). The regression line is the test set only. 

From Figure 5 and Table 1, it is seen that the training scores are slightly lower 
than the test scores. The performance of the feature-engineered model is 
slightly better than the baseline model. In Figure 6, none of the methods is as-
sociated with a uniform bias. However, the Danish Driving Formula tends to 
overestimate the capacity for low capacities and underestimate the capacity 
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for high capacities. This is not the case for the ML approach, though model 
uncertainty is also present here in the form of fluctuations. 

Table 1 Performance metrics of the linear regressions between the model predictions 
and target. R2: coefficient of determination, RMSE: Root Mean Square Error. 

Model,
Hyperparameters 

R2 RMSE 

Train Test Train Test 

SVR (baseline)

C = 104.5, ε = 70, γ = 10−1.4 0.923 0.846 258 288 

SVR (feature-engineered)

C = 104.5, ε = 70, γ = 10−1.2 0.946 0.865 215 269 

Danish Driving Formula 0.760 0.687 455 410 

Figure 6 Comparison of the predictive capabilities of SVR models against the Danish 
Driving Formula on each sample in the test set.  

In comparison, Pal and Deswal (2010) used eight input features (E, Lp, Gp, h, 
Gh, s and hammer type (gravity or steam)) to train an SVR model to achieve a 
coefficient of determination R2 = 0.855 and RMSE = 372 kN on test samples 
[6]. The results of the baseline SVR model in this study are similar. 

A second analysis is conducted with alternative split methods. The first re-
tains all hammer weights of 60 kN (15 % of the data set), and the second re-
tains all data from a single project (16 % of the data set) to mimic a real-world 
case and practical application. The results of the analyses are shown in Table 
2 and Figure 7. The hyperparameters are tuned similarly besides ε = 10. A 
lower ε ensures that more predictions are penalized and more become support 
vectors.  
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Table 2 Metrics of the alternative split methods for the training process.

Split method 
Model,

Hyperparameters 
Train, R2 Test, R2

60 kN hammer 

SVR (baseline)

C = 104, γ = 10-0.75 0.942 –0.133 

SVR (feature-engineered)

C = 105, γ = 10-2 0.913 0.802 

Single project

SVR (baseline)

C = 103.5, γ = 10-1 0.937 0.331 

SVR (feature-engineered)

C = 104, γ = 10-1.25 0.942 0.632 

Figure 7 Pile capacity prediction performance of SVR models with 60 kN hammer data 
points in the test set (above), and a single project case in the test set (below). Model 

evaluated on training set (red) and test set (green).  
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5. DISCUSSION 

The SVR models show increased accuracy and precision compared to the 
Danish Driving Formula. The performance gap for predictions on the test set 
compared to the training set indicates overfitting of the models. However, 
even the Danish Driving Formula shows poorer performance on the test set 
compared to the training set (Table 1), suggesting an uneven split with under-
lying bias or greater error sources in the test set. The relatively lower gap in 
the score metrics of the SVR models between the training set and the test set 
in Table 1 shows them to be well-balanced. 

The data set comprises only 16 commercial projects, in which typically the 
same hammer weight is used for an entire project. Underlying tendencies for 
individual projects may be captured by the baseline model through this feature 
that causes overfitting. The feature engineering efforts, such as constructing 
hammer energy, mitigate this. In the alternative split method where 60 kN 
hammers were withheld, the baseline model is extrapolating as it was only 
trained on 70–90 kN hammers (Figure 3). On the other hand, feature engi-
neering makes the model cover a wider parameter space that makes it interpo-
late within the range of hammer energies. The feature-engineered model 
works nearly as well as for the random split (Figure 7). Some of the perfor-
mance loss may be attributed to the indirect removal of the Hammer Type.  

In the single-project split method where data from a whole project site was 
withheld in training, the feature-engineered model performs better than the 
baseline model (Figure 7). In this split method, parts of the training set's pa-
rameter space may be insufficiently covered in training for the model to accu-
rately predict the target values of the test set. This causes the performance to 
decrease in comparison to the models trained with a direct random data split, 
which suggests a level of extrapolation of new projects. This observation em-
phasizes that the practical application of SVR requires a larger data set that 
must be representative of the population intended for its application. 

As opposed to Deep Learning in which feature engineering is made by the al-
gorithm, supervised Machine Learning allows the human behind to apply 
his/her domain knowledge and modify features based on known physics be-
hind the data. This can generalize the model, mitigate overfitting, and make 
the model more trustworthy. In this research project, knowledge of the driving 
mechanism was the basis for a feature engineering process that led to the 
identification of three basic parameters that represent the hammer strike, pile 
geometry, and soil reaction, and, in addition, ratios between parameters that 
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are more relevant than the original values. Equally important, the data explo-
ration and feature engineering process make the model developer aware of 
any boundaries present in the parameter space. 

The model performances would arguably be improved had the data set been 
soil-specific. However, the lack of restrictions on the soil type at the pile tip 
or along the pile shaft enables broader application. 

6. CONCLUSION 

This paper has shown that feature engineering can significantly improve the 
accuracy and generalization capabilities of an ML regression model based on 
the input data generally used for the semi-empiric Danish Driving Formula. 
This is done using domain knowledge while maintaining control over the 
learning process of the models. On a direct comparison of the coefficient of 
determination R2 in predicting the pile bearing capacity as determined by the 
CAPWAP method, the SVR model, with a random data split, outperforms the 
Danish Driving Formula with 0.865 against 0.687. 

There are several advantages to using data-driven methods in geotechnics. 
Complex relations may be made between two variables dependent on a larger 
multi-dimensional set of features. Supervised machine learning, as opposed to 
deep learning, allows for further control over the training enabling implemen-
tation of domain knowledge of the data and the physics behind them. This 
mitigates the issue of the “black box” that is inherent in employing machine 
learning.  

The research has shown that the Feature-Engineered model can confidently 
interpolate over a limited space of original parameters with poor coverage. 
However, extrapolation and overfitting are shown to be mitigated by a gener-
alization of the features. Yet, the model requires more training data before 
practical application to enable use on new projects without recalibration.  

Future research should involve training on a larger data set with dozens of 
project cases to learn whether the model can perform well on new project 
cases unseen in training. Additionally, using the same or similar feature-engi-
neered parameters in a comparison between different ML algorithms is sug-
gested for future research. 
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